
Research Report: Building a Wide Reach Corpus
for Secure Parser Development
Tim Allison∗, Wayne Burke†, Valentino Constantinou‡, Edwin Goh§,

Chris Mattmann¶, Anastasija Mensikova‖, Philip Southam∗∗,
Ryan Stonebraker††, Virisha Timmaraju‡‡

Jet Propulsion Laboratory, California Institute of Technology
Pasadena, California

∗timothy.b.allison@jpl.nasa.gov, †wayne.m.burke@jpl.nasa.gov, ‡vconstan@jpl.nasa.gov,
§edwin.y.goh@jpl.nasa.gov ¶chris.a.mattmann@jpl.nasa.gov, ‖anastasia.menshikova@jpl.nasa.gov,
∗∗philip.southam@jpl.nasa.gov, ††ryan.a.stonebraker@jpl.nasa.gov, ‡‡virisha.timmaraju@jpl.nasa.gov

Abstract—Computer software that parses electronic files is
often vulnerable to maliciously crafted input data. Rather than
relying on developers to implement ad hoc defenses against
such data, the Language-theoretic security (LangSec) philosophy
offers formally correct and verifiable input handling throughout
the software development lifecycle. Whether developing from a
specification or deriving parsers from samples, LangSec parser
developers require wide-reach corpora of their target file format
in order to identify key edge cases or common deviations
from the format’s specification. In this research report, we
provide the details of several methods we have used to gather
approximately 30 million files, extract features and make these
features amenable to search and use in analytics. Additionally,
we provide documentation on opportunities and limitations of
some popular open-source datasets and annotation tools that will
benefit researchers which need to efficiently gather a large file
corpus for the purposes of LangSec parser development.

Index Terms—LangSec, language-theoretic security, file corpus
creation, file forensics, text extraction, parser resources

I. INTRODUCTION

Software that processes electronic files is notoriously vul-
nerable to maliciously crafted input data. Language-theoretic
security (LangSec) is one software development method that
offers assurance of software free from common classes of
vulnerabilities. Whether LangSec parsers are built from formal
specifications or are derived from samples, these parsers
require wide-reach corpora for inference and/or integration
testing throughout the development cycle. In this paper, we
report on work to date in building a wide reach corpus to
support the development of LangSec-based parsers. Specifi-
cally, in the early stages of this work, colleagues are applying
LangSec techniques to build assured parsers for the Portable
Document Format (PDF) file type.

The Portable Document Format – initially released by
Adobe in 1993 – is immensely popular and in use globally in
many applications, and has been the subject of research into

The research was carried out at the NASA (National Aeronautics and
Space Administration) Jet Propulsion Laboratory, California Institute of
Technology under a contract with the Defense Advanced Research Projects
Agency (DARPA) SafeDocs program. Copyright 2020 California Institute of
Technology. U.S. Government sponsorship acknowledged.

malware detection [1] [2] [3] since the first virus was discov-
ered in the PDF file type in 2001 (the OUTLOOK.PDFWorm
or Peachy virus) [4]. The file type – which encapsulates text,
fonts, images, vector graphics, and other information needed to
display the document – is prone to manipulation by malicious
actors and inconsistent implementations against the Interna-
tional Organization for Standardization (ISO) specifications
outlined for each version of PDF (e.g. producing valid PDFs
from malformed files) [5]. These challenges and continued
wide-spread use of the file type provide the motivation for an
initial focus on this file format.

We share our findings and report our work to-date in
building a large-scale, wide-reach corpus; further, we discuss
initial steps towards search and analytics on this corpus
to enable research into features of “files in the wild” and
the construction of development corpora for LangSec-based
parsers using the attributes available for each file as filters in
search. We believe that our lessons learned and work to-date
will help address some of the challenges faced by researchers
and parser developers who need to generate their own corpora.
Further, we have plans to release our corpus generation and
annotation tools to the general public to support LangSec-
based parser development.

II. BACKGROUND AND RELATED WORK

Since at least Garfinkel et al.’s seminal work in gathering
and publishing a collection of one million files – GovDocs1
[6] – researchers and parser developers have recognized the
value of publicly available, large scale corpora for developing
and testing file parsers and forensic tools. In the open source
world, for example, at least three Apache Software Foundation
projects (Apache Tika [7], Apache PDFBox [8] and Apache
POI [9]) rely on Garfinkel et al.’s corpus for large scale
regression testing and have extended this corpus to include
a richer set of more diverse and more recent file types [10]
[11]. Additionally, researchers writing digital forensics (DF)
tools have noted the value in curating large-scale corpora for
development of these tools and their ability to enable direct
comparison of different approaches and tools under develop-



ment, in addition to providing the means for reproducibility
[6] [12] [13].

Forensics tools and LangSec-based parsers are typically
applied to datasets that are large and generated by human
beings [6], and unique challenges exist when developing
large-scale, wide-reaching corpora for digital forensics and
development of LangSec-based parsers. There is a need for
data diversity across file types, their content, and temporal
attributes (date of creation, last modification date, and others)
[12]. Due to the ubiquity of file formats such as PDF – which
themselves contain near limitless combinations of content
(fonts, images, links, etc.) – corpora used for development of
LangSec-based parsers must be as expressive and diverse as
possible in order to ensure coverage of possible stresses and
edge cases presented to parsers. It is not enough to benchmark
parser performance against files from a single creator tool,
source organization or individual, point in time, geographic
location, and so on.

There are also challenges in gathering files for and hosting
multi-terabyte corpora for use by the research community.
While cloud-based solutions are now available for corpora
generation (file gathering or crawling) and both access to
internet and connection speeds have improved dramatically,
downloading multi-terabyte corpora in bulk is still not practical
and may not be feasible, depending on the resources of the
researcher(s). In addition, it is arguable that – at least from
the perspective of generating corpora – that Jevon’s paradox
may be applicable in this environment [14], in that the scale
and diversity of generating corpora is only limited by its cost
computationally and financially. In other words, the growth in
scale and diversity of corpora is a function of the efficiency in
which a resource is used (in this case, computational resources
for gathering and annotating files). Filtering and search tools
are needed in order to locate specific files of interest.

As such, a parallel effort is being undertaken to facili-
tate search and descriptive analytics on extracted features in
conjunction with gathering the corpus. Our model for this
is VirusTotal [15], which allows users to search by a rich
set of features [16]. VirusTotal offers a useful ontology as
a basis for file types and features that should be supported
in an analytics and retrieval system. In practice, however,
researchers and parser developers require far more features to
target specific aspects of the file format of interest - features
that not only provide information about the characteristics of
the files themselves but also the structure of their content.
Further research and development effort is required to identify
and provide features of interest to the LangSec community
(like those features provided by VirusTotal) to enable search
and analytics on file corpora and provide the ability to locate
(and subset from a corpus) specific files of interest for research
or development of secure parsers.

Corpus-Generation Architecture Overview

For the present purpose of developing a corpus for use by
LangSec parser developers, we developed the pipeline shown
in Figure 1. Various data sources that have been identified are

piped into pre-processing blocks, which then store the files
in an Amazon Web Services (AWS) S3 bucket. The key data
source—Common Crawl—and the associated pre-processing
steps will be further discussed in Section III.

These pre-processed PDF files are then sent from the AWS
S3 bucket to several feature-extraction tools ranging from PDF
parsers to anti-virus software, of which Apache Tika and Clam
Anti-Virus are detailed in Section IV. The combination of
tools will ideally generate a set of features that sufficiently
characterize the content, structure, and malicious/adversarial
nature of a given file. However, in the event that more features
are required, the modular nature of this architecture allows for
additional tools to be incorporated in the feature extraction
step. For example, one could include a plethora of different
anti-virus software to further explore the correlation between
file content/structure and false positives.

Previous work has shown that providing files as stand-alone
corpora significantly simplifies the level of effort needed in
meta-data and text extraction [6], which is also applicable to
the development of LangSec-based parsers. In our pipeline,
features provided from feature-extraction tools are merged
into Amazon’s Athena database, which serves as the back-
end to store features which are then merged and indexed
into an Elasticsearch service. In conjunction with Kibana,
the Elasticsearch Application Program Interface (API) enables
researchers and developers to perform data analytics and
visualization. Functionality is also in development to enable
users to download subsets of the corpus that can be based on
both simple and complex filters.

III. GATHERING FILES

In the following sections, we describe three methods for
gathering files: a) using Common Crawl data, b) focused,
intelligent, link-based crawling with Sparkler, and c) custom
API usage and/or scraping for high-value sites that may not
have the traditional link structure required for link-based
crawlers.

A. Common Crawl

Crawling the web is notoriously challenging and resource
intensive [17]. However, the web offers a tremendous amount
of real world, wide-reach data. The Common Crawl project
[18] offers researchers one option for working with large
amounts of “pre-crawled” data. In the next section, we offer
an introduction to Common Crawl and then a brief description
of how we gathered nearly 30 million PDFs from Common
Crawl.

1) Common Crawl Basics: The Common Crawl project
runs a monthly crawl across a large amount of the internet.
The December 2019 crawl contained 2.45 billion URLs,
comprising 234 terabytes (TB) of uncompressed content. For
each crawl, the project offers four types of data [19] and [20]:

1) WARC – WebARChive format. This is a standardized
format that for web archiving that includes the HTTP
response status and headers (see Fig. 2 below), other



Fig. 1. Data pipeline for corpus generation illustrating file-gathering, preprocessing, storage, feature extraction, and subsequent deployment and analysis.

provenance metadata and the raw bytes retrieved for a
given URL (50 TB compressed)

2) WAT – Metadata files about the crawl (17.6 TB com-
pressed)

3) WET – Text extracted from HTML, XHTML and text
files (8 TB compressed)

4) URL Index Files – metadata for each URL including
HTTP response status code, HTTP header content-type,
detected content-type, detected language, whether the
content was truncated

Fig. 2. An example of HTTP headers stored in a WARC file

Not surprisingly, the majority of retrieved files were HTML
or XHTML. In Figure 3 and Table I, we report the top 10 most
common file types in the December 2019 crawl as detected by
Apache Tika.

Amazon hosts the data in AWS Public Data Sets, and
researchers can process the files on AWS or download all
the files or specific files from the web for local processing.
Common Crawl publishes indices of the content to enable
selection and extraction of specific files by original URL,
detected file type, detected language or several other features.

When working with data from Common Crawl, the team
noticed one major limitation and three areas that required
consideration and/or further processing.

The major limitation that the team noticed is that Common
Crawl does not crawl the entire web nor even entire sites.

MIME Number of Files
text/html 1,602,196,927

application/xhtml+xml 376,252,298
text/plain 50,931,060

application/octet-stream 23,184,879
UNKNOWN* 11,110,346

message/rfc822 2,680,373
application/atom+xml 2,660,439

image/jpeg 2,350,339
application/rss+xml 2,301,081

application/pdf 2,030,356

TABLE I
TOP 10 FILE TYPES IN THE DECEMBER 2019 CRAWL

As an example, we compared the number of pages returned
by Google and Bing for the ’jpl.nasa.gov’ domain, and we
compared that with the number of documents in the Common
Crawl index for the December 2019 crawl (II). The first three
data rows represent the total number of files. The second three
report the number of PDFs found on the site.

Search Engine Condition Number of Files
Google site:jpl.nasa.gov 1.2 million
Bing site:jpl.nasa.gov 1.8 million

Common Crawl *.jpl.nasa.gov 128,406
Google site:jpl.nasa.gov filetype:pdf 50,700
Bing site:jpl.nasa.gov filetype:pdf 64,300

Common Crawl *.jpl.nasa.gov mime= pdf 7

TABLE II
NUMBER OF PAGES BY SEARCH ENGINE AND FILE TYPE FOR

’JPL.NASA.GOV’

While the cause of this incomplete crawl is not clear, the
team suspects that the cause may be that the ’jpl.nasa.gov’
site relies heavily on javascript and a crawler would need to
render the javascript to extract all the links (with, e.g. headless




	Introduction
	Background and Related Work
	Gathering Files
	Common Crawl
	Common Crawl Basics
	Extracting PDFs

	Sparkler
	Custom Crawlers

	Extracting Features
	Clam Anti-Virus
	Apache Tika

	Visualizing Features
	Future Work
	References
	JPL Abuse Data Malware Categories


