
Armor Within: Defending against
Vulnerabilities in Third-Party Libraries

Sameed Ali, Prashant Anantharaman, Sean Smith
Dartmouth College, NH, USA

sameed.ali.gr@dartmouth.edu

1

Outline

2

Motivation Our
Approaches

Evaluation Conclusions

Crafted input attacks on libraries
● Third-party library input not

validated by main application

● App and library in same address

space

● Otherwise secure software

compromised by a crafted input

attack on a third-party library 3

4

5

6

7

An example: CVE-2004-0597

� The adversary tricks the browser into
sending a malicious PNG file into the
libPNG library.

� The exploited software module can then
access sensitive information in other parts
of the address space.

8

Outline

9

Motivation Our
Approaches

Evaluation Conclusions

Proposed Solution
1. Compartmentalize application address space (via ELFbac)

2. LangSec validation applied to input of third-party software modules

3. Inject LangSec validation parser/filter in the software via

a. Object rewriting

b. Binary rewriting

4. Ensure CFI so validation not bypassed (via ELFbac policy)

10

CVE-2004-0597: LibPNG
● The adversary tricks the

browser into sending a
malicious PNG file into the
libpng library.

● The exploited software
module can then access
sensitive information in other
parts of the address space.

11

CVE-2004-0597: LibPNG
● The adversary tricks the

browser into sending a
malicious PNG file into the
libpng library.

● The exploited software
module can then access
sensitive information in other
parts of the address space.

12

CVE-2004-0597: LibPNG
● The adversary tricks the

browser into sending a
malicious PNG file into the
libpng library.

● The exploited software
module can then access
sensitive information in other
parts of the address space.

13

What does a LS
parser/filter look like?

14

A simple PNG LS parser/filter using Hammer

15

Ensuring control flow integrity

16

Filter Injection
via object

rewriting

� Assumption: Constituent software
modules compiled objects
available

� Rewrite the Symbol table of the
target object

� Library symbols point to with
LangSec filter functions

� Link the objects together to
generate the binary

� Inject ELFbac policy

17

Filter Injection
via LLVM

� Lift binary to LLVM IR code

� Insert LangSec validation filter via a
custom LLVM IR pass

� Compile LLVM to generate
required binary

� Inject ELFbac policy

18

Outline

19

Motivation Our
Approaches

Evaluation Conclusions

Evaluation

To evaluate our system, we answer the following questions:

● Is Armor Within effective against known vulnerabilities?

● How much overhead do our LangSec filters add to existing binaries?

● Can Armor Within effectively inject parsers in existing binaries?

20

Evaluating against known vulnerabilities
Armor Within was able to successfully detect and mitigate the following
vulnerabilities:

● CVE-2016-1838: Denial-of-service heap-based buffer over-read
vulnerability in LIBXML

● CVE-2004-0597: Stack-Overflow remote code execution vulnerability in
LibPNG

● CVE-2010-1205: Buffer overflow in LibPNG

We ran these experiments on a Desktop computer equipped with a Xeon
E3-1245 processor and 8 Gigabytes of RAM. The computer ran Ubuntu Linux
version 12.04 with the ELFbac Linux kernel patch.

21

Overheads added by our LangSec filters

22

Outline

23

Motivation Our
Approaches

Evaluation Conclusions

Conclusions

� Armor Within comprises two techniques to inject LangSec
parsers in binaries:
� Object rewriting
� Binary rewriting

� First technique is suited to dynamically linked libraries,
whereas second technique works for statically linked
libraries.

� Our tools were effective and added minimal overhead in
terms of memory and CPU time to existing binaries.

24

Future Work
● Armor Within, works with Hammer parsers. We are working to make the

tool more generic and can accept any parser combinator toolkit.

● For control-flow integrity, we used ELFbac in this paper. We are working
to make our tools to be agnostic of the control-flow integrity
techniques.

● We are working on a parser generator that converts BNF syntax to
parser-combinator syntax.

25

Thank you!
Questions?

Sameed Ali sameed.ali.gr@dartmouth.edu

Prashant pa@cs.dartmouth.edu

Sean sws@cs.dartmouth.edu

Code available at:
https://bitbucket.org/sameed_ali/app-armor-poc/

26

http://dartmouth.edu
http://cs.dartmouth.edu
http://cs.dartmouth.edu
https://bitbucket.org/sameed_ali/app-armor-poc/src/master/

Acknowledgements
This material is based upon work supported by the United States Air Force
and DARPA under Contract No. FA8750-16-C-0179. Any opinions, findings
and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of United States
Government or any agency thereof.

27

