Armor Within: Defending against
Vulnerabilities in Third-Party Libraries

Sameed Ali, Prashant Anantharaman, Sean Smith
Dartmouth College, NH, USA
sameed.ali.gr@dartmouth.edu

D

DARTMOUTH

Outline

@ Vv =

Motivation Qur Evaluation Conclusions
Approaches

1S S S 8
il

Crafted input attacks on libraries

adversary

- external interface

Third-party library input not

validated by main application

main code

App and library in same address

space
Otherwise secure software vull_rtw)erable

ibrary
compromised by a crafted input application

attack on a third-party library

CVE-2019-7317: Use-after-free in png_image_free of libpng library

Reporter OSS-Fuzz, Eddie Lee

Impact high |

Description

A use-after-free vulnerability was discovered in the png_image_free function in the libpng library.
This could lead to denial of service or a potentially exploitable crash when a malformed image is
processed.

References
Bug 1542829

CVE

Repor
Impac
Descr

A use-
This ¢
proces

Refere

Bug_1t

libpng integer overflow

Announced February 16, 2012 ‘ary
Impact Critical |
Products Firefox, Firefox ESR, SeaMonkey, Thunderbird, Thunderbird ESR

Fixed in Firefox 10.0.2
Firefox 3.6.27
Firefox ESR 10.0.2
SeaMonkey 2.7.2 . .
Thunderbird 10.0.2 Image Is
Thunderbird 3.1.19
Thunderbird ESR 10.0.2

library.

Description

An integer overflow in the libpng library can lead to a heap-buffer overflow when decompressing
certain PNG images. This leads to a crash, which may be potentially exploitable.

Security Update Guide > Details

CVE-2020-0938 | Adobe Font Manager Library Remote Code Execution Vulnerability

Security Vulnerability

Published: 04/14/2020 | Last Updated : 04/14/2020
MITRE CVE-2020-0938

A remote code execution vulnerability exists in Microsoft Windows when the Windows Adobe Type Manager Library improperly handles a specially-crafted
multi-master font - Adobe Type 1 PostScript format.

For all systems except Windows 10, an attacker who successfully exploited the vulnerability could execute code remotely. For systems running Windows 10,
an attacker who successfully exploited the vulnerability could execute code in an AppContainer sandbox context with limited privileges and capabilities. An
attacker could then install programs; view, change, or delete data; or create new accounts with full user rights.

There are multiple ways an attacker could exploit the vulnerability, such as convincing a user to open a specially crafted document or viewing it in the
Windows Preview pane.

The update addresses the vulnerability by correcting how the Windows Adobe Type Manager Library handles Typel fonts.

CVE-2020-9391

CVE-2020-9290

CVE-2020-9287

CVE-2020-8945

CVE-2020-8910

CVE-2020-8899

CVE-2020-8155

CVE-2020-8096

CVE-2020-8093

CVE-2020-7618

CVE-2020-7617

CVE-2020-7490

An issue was discovered in the Linux kernel 5.4 and 5.5 through 5.5.6 on the AArch64 architecture. It ignores the top byte in the address passed
to the brk system call, potentially moving the memory break downwards when the application expects it to move upwards, aka CID-
dcde237319e6. This has been observed to cause heap corruption with the GNU C Library malloc implementation.

An Unsafe Search Path vulnerability in FortiClient for Windows online installer 6.2.3 and below may allow a local attacker with control over the
directory in which FortiClientOnlinelnstaller.exe and FortiClientVPNOnlinelnstaller.exe resides to execute arbitrary code on the system via
uploading malicious Filter Library DLL files in that directory.

An Unsafe Search Path vulnerability in FortiClient EMS online installer 6.2.1 and below may allow a local attacker with control over the directory in
which FortiClientEMSOnlinelnstaller.exe resides to execute arbitrary code on the system via uploading malicious Filter Library DLL files in that
directory.

The proglottis Go wrapper before 0.1.1 for the GPGME library has a use-after-free, as demonstrated by use for container image pulls by Docker or
CRI-O. This leads to a crash or potential code execution during GPG signature verification.

A URL parsing issue in goog.uri of the Google Closure Library versions up to and including v20200224 allows an attacker to send malicious URLs
to be parsed by the library and return the wrong authority. Mitigation: update your library to version v20200315.

There is a buffer overwrite vulnerability in the Quram gmg library of Samsung's Android OS versions O(8.x), P(9.0) and Q(10.0). An
unauthenticated, unauthorized attacker sending a specially crafted MMS to a vulnerable phone can trigger a heap-based buffer overflow in the
Quram image codec leading to an arbitrary remote code execution (RCE) without any user interaction. The Samsung ID is SVE-2020-16747.

An outdated 3rd party library in the Files PDF viewer for Nextcloud Server 18.0.2 caused a Cross-site scripting vulnerability when opening a
malicious PDF.

Untrusted Search Path vulnerability in Bitdefender High-Level Antimalware SDK for Windows allows an attacker to load third party code from a
DLL library in the search path. This issue affects: Bitdefender High-Level Antimalware SDK for Windows versions prior to 3.0.1.204 .

A vulnerability in the AntivirusforMac binary as used in Bitdefender Antivirus for Mac allows an attacker to inject a library using DYLD environment
variable to cause third-party code execution

sds through 3.2.0 is vulnerable to Prototype Pollution.The library could be tricked into adding or modifying properties of the 'Object.prototype' by
abusing the 'set' function located in 'js/set.js'.

ini-parser through 0.0.2 is vulnerable to Prototype Pollution.The library could be tricked into adding or modifying properties of Object.prototype
using a '__proto__' payload.

A CWE-426: Untrusted Search Path vulnerability exists in Vijeo Designer Basic (V1.1 HotFix 15 and prior) and Vijeo Designer (V6.9 SP9 and
prior), which could cause arbitrary code execution on the system running Vijeo Basic when a malicious DLL library is loaded by the Product.

An example: CVE-2004-0597

. 5 image
The adversary tricks the browser into

orking module GUI module

Sending a malicious PNG file into the Browser core
IbPNG library. onciiive

‘| data

\
The exploited software module can then .- .
access sensitive information in other parts

of the address space.

Outline

@ Vv =

Motivation Our Evaluation Conclusions
Approaches

1S S S 8
il

Proposed Solution

Compartmentalize application address space (via ELFbac)
LangSec validation applied to input of third-party software modules
Inject LangSec validation parser/filter in the software via

Object rewriting

Binary rewriting

Ensure CFl so validation not bypassed (via ELFbac policy)

CVE-2004-0597: LIbPNG

browser into sending @
malicious PNG file into the orking module GUI module

libpng library. Browser core

sensitive
data

The exploited software
module can then access
sensitive information in other

parts of the address space.
vulnerable XML module
libpng libxml

CVE-2004-0597: LIbPNG

The adversary fricks the Malicious PNG

browser into sending a Image

malicious PNG file info the
Iibpng library. Browser core

Sensitive
data

The exploited software
module can then access

sensitive information in other

parts of the address space.
libPNG ibxm

Browser

CVE-2004-0597: LIbPNG

T cbersery et e

main code

browser into sending @
malicious PNG file into the
libpng library.

The exploited software

PNG LangSec XML LangSec
module can then access Parser Parser

sensitive information in other

parts of the address space. vulnerable vulnerable
libpng libxml

application

What does a LS
parser/filter look like?

A simple PNG LS parser/filter using Hammer

HParserx get_PNG_parser() {
const HParserx MAGIC = h_token("\x89\x50\x4E\x47\x0D\x0A\x1A\x0A", 8);
const HParserx IHDR_len = h_int_range(h_uint32(), 13, 13);
const HParserx IHDR_type = h_token("IHDR", 4);
const HParserx IHDR_chunk = h_sequence(h_uint32(), h_uint32(), h_repeat_n(h_int8(), 5), NULL);
const HParserx IHDR_crc = h_uint32();

const HParserx byte = h_uint8();

// tRNS chunk

const HParserx tRNS_chunk_type = h_token("tRNS", 4);

const HParserx tRNS_chunk_len = h_left(h_int_range(h_uint32(), ©, 255), tRNS_chunk_type);
const HParserx tRNS_chunk = h_length_value(tRNS_chunk_len, byte);

// any other chunk

const HParserx chunk_type = h_not(h_token("tRNS", 4));
const HParserx chunk_len = h_left(h_uint32(), chunk_type);
const HParserx chunk = h_length_value(chunk_len, byte);

const HParserx chunks = h_manyl(chunk);
HParserx PNG_parser = h_sequence(MAGIC, IHDR_len, IHDR_type, IHDR_chunk, IHDR_crc, chunks,

NULL);
return PNG_parser;

Ensuring control flow integrity

Starting state function call to LangSec wrapper function call to libpng function

‘main’ LangSec filter

state

libPNG state

Policy State Diagram

Filter Injection
via object
rewriting

Assumption: Constituent software
modules compiled objects
available

Rewrite the Symbol table of the
target object

Library symbols point to with
LangSec filter functions

Link the objects together to
generate the binary

Inject ELFbac policy

Filter Injection
via LLVM

Lift binary to LLVM IR code

Insert LangSec validation filter via a
custom LLVM IR pass

Compile LLVM to generate
required binary

Inject ELFbac policy

Outline

@ Vv =

Motivation Qur Evaluation Conclusions
Approaches

1S S S 8
il

Evaluation
To evaluate our system, we answer the following questions:

Is Armor Within effective against known vulnerabilitiese
How much overhead do our LangSec filters add to existing binariese

Can Armor Within effectively inject parsers in existing binaries?

Evaluating against known vulnerabilities

Armor Within was able to successfully detect and mitigate the following
vulnerabilities:

CVE-2016-1838: Denial-of-service heap-based buffer over-read
vulnerability in LIBXML
CVE-2004-0597: Stack-Overflow remote code execution vulnerability in

LIOPNG
CVE-2010-1205: Buffer overflow in LiIbPNG

We ran these experiments on a Desktop computer equipped with a Xeon
E3-1245 processor and 8 Gigabytes of RAM. The computer ran Ubuntu Linux

version 12.04 with the ELFbac Linux kernel patch.

Overheads added by our LangSec filters

PNG file size

No instrumentation

With LangSec filter

LangSec filter with ELFbac policy

100KB
Page faults
Instructions
Time

273
28,974,520

0.028951596

660
35.669.663

0.061482514

1230
2.050.000.720
0.540514533

200KB
Page faults
Instructions
Time

326
45926310

0.063752567

713
52,487 839

0.076081896

1,334
2,414 208 538
0.66811976

S00KB
Page faults
Instructions
Time

525
111338010

0.117933531

912

—110.402 200 _

0.127791843

1,734

| 1.201331268 |

Outline

@ Vv =

Motivation Qur Evaluation Conclusions
Approaches

1S S S 8
il

23

Conclusions

Armor Within comprises two techniques to inject LangSec

parsers in binaries:
Malicious PNG

Object rewriting Image

working module GUI module

Browser core

Binary rewriting

Sensitive

data

First technique is suited to dynamically linked libraries,
whereas second technique works for statically linked

libraries.

libPNG foxml
Our tools were effective and added minimal overhead in
terms of memory and CPU time to existing binaries.

Future Work

Armor Within, works with Hammer parsers. We are working to make the
tool more generic and can accept any parser combinator toolkit.

For control-flow integrity, we used ELFbac in this paper. We are working
to make our tools to be agnostic of the control-flow integrity
techniques.

We are working on a parser generator that converts BNF syntax to
parser-combinator syntax.

Thank you!

Questions?

Sameed Ali sameed.ali.gr@dartmouth.edu
Prashant pa@cs.dartmouth.edu

Sean sws@cs.dartmouth.edu

Code available atf:
https.//bitbucket.org/sameed ali/app-armor-poc/

http://dartmouth.edu
http://cs.dartmouth.edu
http://cs.dartmouth.edu
https://bitbucket.org/sameed_ali/app-armor-poc/src/master/

Acknowledgements

This material is based upon work supported by the United States Air Force
and DARPA under Contract No. FA8750-16-C-0179. Any opinions, findings
and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of United States
Government or any agency thereof.

