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Crafted input attacks on libraries
● Third-party library input not 

validated by main application

● App and library in same address 

space

● Otherwise secure software 

compromised by a crafted input 

attack on a third-party library 3
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An example: CVE-2004-0597

� The adversary tricks the browser into 
sending a malicious PNG file into the 
libPNG library. 

� The exploited software module can then 
access sensitive information in other parts 
of the address space.
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Proposed Solution
1. Compartmentalize application address space (via ELFbac)

2. LangSec validation applied to input of third-party software modules

3. Inject LangSec validation parser/filter in the software via

a. Object rewriting

b. Binary rewriting

4. Ensure CFI so validation not bypassed (via ELFbac policy)
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CVE-2004-0597: LibPNG
● The adversary tricks the 

browser into sending a 
malicious PNG file into the 
libpng library. 

● The exploited software 
module can then access 
sensitive information in other 
parts of the address space.
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What does a LS 
parser/filter look like?
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A simple PNG LS parser/filter using Hammer
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Ensuring control flow integrity
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Filter Injection 
via object 

rewriting

� Assumption: Constituent software 
modules compiled objects 
available

� Rewrite the Symbol table of the 
target object

� Library symbols point to with 
LangSec filter functions

� Link the objects together to 
generate the binary

� Inject ELFbac policy
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Filter Injection 
via LLVM 

� Lift binary to LLVM IR code

� Insert LangSec validation filter via a 
custom LLVM IR pass

� Compile LLVM to generate 
required binary

� Inject ELFbac policy
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Evaluation

To evaluate our system, we answer the following questions:

● Is Armor Within effective against known vulnerabilities?

● How much overhead do our LangSec filters add to existing binaries?

● Can Armor Within effectively inject parsers in existing binaries?
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Evaluating against known vulnerabilities
Armor Within was able to successfully detect and mitigate the following 
vulnerabilities:

● CVE-2016-1838: Denial-of-service heap-based buffer over-read 
vulnerability in LIBXML

● CVE-2004-0597: Stack-Overflow remote code execution vulnerability in 
LibPNG

● CVE-2010-1205: Buffer overflow in LibPNG

We ran these experiments on a Desktop computer equipped with a Xeon 
E3-1245 processor and 8 Gigabytes of RAM. The computer ran Ubuntu Linux 
version 12.04 with the ELFbac Linux kernel patch.
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Overheads added by our LangSec filters
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Conclusions

� Armor Within comprises two techniques to inject LangSec
parsers in binaries:
� Object rewriting
� Binary rewriting

� First technique is suited to dynamically linked libraries, 
whereas second technique works for statically linked 
libraries.

� Our tools were effective and added minimal overhead in 
terms of memory and CPU time to existing binaries.
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Future Work
● Armor Within, works with Hammer parsers. We are working to make the 

tool more generic and can accept any parser combinator toolkit. 

● For control-flow integrity, we used ELFbac in this paper. We are working 
to make our tools to be agnostic of the control-flow integrity 
techniques.

● We are working on a parser generator that converts BNF syntax to 
parser-combinator syntax. 
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Thank you!
Questions?

Sameed Ali           sameed.ali.gr@dartmouth.edu

Prashant               pa@cs.dartmouth.edu

Sean                     sws@cs.dartmouth.edu

Code available at:
https://bitbucket.org/sameed_ali/app-armor-poc/
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