
Formally-Verified ASN.1 Protocol C-language
Stack

Vadim Zaliva 1 Nika Pona 2

1Carnegie Mellon University

2Digamma.ai

What is ASN.1?

• At Digamma.ai we are verifying a compiler for ASN.1
• The ASN.1 is a language for defining data structures and rules for
serialization and de-serialization.

• Initially we focus on a subset of ASN.1 used in the X.509 standard
which defines the format of public key certificates.

• We formalize Basic Encoding Rules (BER) and Distinguished
Encoding Rules (DER)

2

ASN.1 example of an X.509-like certificate

1 X509 DEFINITIONS ::= BEGIN
2

3 Certificate ::= SEQUENCE {
4 tbsCertificate TBSCertificate,
5 signatureAlgorithm AlgorithmIdentifier,
6 signature BIT STRING
7 }
8

9 TBSCertificate ::= SEQUENCE {
10 version [0] INTEGER,
11 serialNumber INTEGER,
12 signature AlgorithmIdentifier,
13 issuer Name,
14 subject Name,
15 subjectPublicKeyInfo SubjectPublicKeyInfo,
16 }

17

18 SubjectPubicKeyInfo ::= SEQUENCE {
19 algorithm AlgorithmIdentifier,
20 subjectPublicKey BIT STRING
21 }
22

23 AlgorithmIdentifier ::= SEQUENCE {
24 algorithm OBJECT IDENTIFIER
25 }
26

27 Name ::= SEQUENCE OF SET OF SEQUENCE {
28 type OBJECT IDENTIFIER,
29 value ANY DEFINED BY type
30 }
31

32 END

3

ASN1C compiler

An ASN.1 compiler parses ASN.1 syntax definitions and produces
either a source code of a specialized protocol encoder/decoder for
this data type or a run-time data for a parametric encoder/decoder.

We are verifying a mature open-source ASN.1 compiler, ASN1C
(https://github.com/vlm/asn1c). It is well-tested and widely
used. We do the verification in Coq proof assistant.

4

https://github.com/vlm/asn1c

What Coq does?

In Coq you can:

• define functions and predicates
• state mathematical theorems and soǒtware specifications
• interactively develop formal proofs of theorems
• machine-check these proofs by a relatively small trusted kernel
based on the Calculus of Inductive Constructions

• compile certified programs to languages like OCaml, Haskell or
Scheme.

5

Preliminary work: traditional approach

First, we tried the traditional approach on an error-prone part of
ASN.1: floating-point numbers encoding/decoding
(https://github.com/digamma-ai/asn1fpcoq). We wrote the
encoders/decoders in Coq, proved their correctness and extracted to
OCaml. This approach is not very practical since the generated code
is not as efficient and usable as the C code.

Therefore we decided to try out a different approach: verify the C
code directly.

6

https://github.com/digamma-ai/asn1fpcoq

Working with C semantics

We rely on the work previously done for the CompCert project
(http://compcert.inria.fr/). CompCert is a verified compiler
for C, written in Coq and proved to work correctly

• We parse C code into a Coq abstract syntax tree using CompCert
• Write a specification in Coq
• Prove that the generated AST behaves according to the
specification, according to semantics of C defined in CompCert

7

http://compcert.inria.fr/

Preliminary experiments

First we took a relatively simple but representative function
strtoimax (string to integer conversion with bounds checking)
from ASN1C and proved it correct using two approaches:

• proof using operational semantics defined in CompCert
• proof using separation logic defined on top of CompCert’s
operational semantics using Verified Soǒtware Toolchain (VST,
https://github.com/PrincetonUniversity/VST)

During this experiment we found three bugs in this function (integer
overflow, wrong memory write, semantically unintended behaviour).
We saw that using VST is more practical.

8

https://github.com/PrincetonUniversity/VST

Verification Architecture

We ended up with following verification architecture:

Hoare & Separation logics

Clightgen

Extraction

QuickChick Executable Spec

High-level Spec

ASN.1 Standard

VST Spec

C.AST

C

Memory safety,
Heap & Stack Bounds

Ocaml, Haskell

Roundtrip Property,
Standard Compliance

10

Verification Architecture explained: BOOLEAN encoder/decoder

Now we explain the verification architecture on example of the
boolean decoder. We focus on Basic Encoding Rules (BER).

The ASN.1 Standard says:
§8.2.1. The contents octets shall consist of a single octet.
§8.2.2. If the boolean value is FALSE the octet shall be zero. If
the boolean value is TRUE the octet shall have any non-zero
value, as a sender’s option.

11

High-level spec (BOOLEAN)

1 Inductive BER_Bool : B→ list byte→ Prop :=
2 | False_Bool_BER: BER_Bool false [0]
3 | True_Bool_BER b : b <> 0 → BER_Bool true [b].

BER_Bool is a relation between booleans and lists of bytes (octets)
with two rules that define this relation and formalize (part of) a
paragraph in the actual standard. This relation defines how a value
is encoded. Then BER relation (next slide) defines how the whole
packet (tag-length-value) is encoded.

12

High-level spec for other types

1 Inductive BER : asn_value → list byte → Prop :=
2 | Bool_BER b t v:
3 PrimitiveTag t → (* § 8.2.1 *)
4 BER_Bool b v →
5 BER (BOOLEAN b) (t ++[1] ++v)
6
7 | Integer_long_BER t l v z:
8 PrimitiveTag t → (* 8.3.1 *)
9 Length (length v) l → (* 10.1 *)
10 1 < length v → (* 8.3.2, case 2 *)
11 (v[0] = 255 → get_bit 0 v[1] = 0
12 ∧ v[0] = 0 → get_bit 0 v[1] = 1) → (* 8.3.2, (a) and (b) *)
13 BER_Integer z v →
14 BER (INTEGER z) (t ++l ++v)
15 ...
16
17 | Sequence_BER t l ls vs:
18 let v := flatten vs in
19 ConstructedTag t → (* 8.9.1 *)
20 Length (length v) l → (* 10.1 *)
21 (∀ n, n < length ls → BER ls[n] vs[n]) → (* 8.9.2 *)
22 BER (SEQUENCE ls) (t ++l ++v)

13

Decoder C implementation
1 asn_dec_rval_t
2 BOOLEAN_decode_ber(const asn_codec_ctx_t *opt_codec_ctx,
3 const asn_TYPE_descriptor_t *td, void **bool_value,
4 const void *buf_ptr, size_t size, int tag_mode) {
5 BOOLEAN_t *st = (BOOLEAN_t *)*bool_value;
6 asn_dec_rval_t rval;
7 ber_tlv_len_t length;
8
9 if(st == NULL) {
10 st = (BOOLEAN_t *)(*bool_value = CALLOC(1, sizeof(*st)));
11 if(st == NULL) {
12 rval.code = RC_FAIL;
13 rval.consumed = 0;
14 return rval;
15 }
16 }
17 rval = ber_check_tags(opt_codec_ctx, td, 0, buf_ptr, size,
18 tag_mode, 0, &length, 0);
19 if(rval.code != RC_OK)
20 return rval;
21
22 buf_ptr = ((const char *)buf_ptr) + rval.consumed;
23 size -= rval.consumed;
24 if(length > (ber_tlv_len_t)size || length != 1) {
25 ASN__DECODE_FAILED;
26 }
27
28 *st = *((const uint8_t *)buf_ptr);
29
30 rval.code = RC_OK;
31 rval.consumed += length;
32
33 return rval;
34 } 14

Executable spec

Executable specification is an abstraction of the C implementation of
the decoder.

1 Definition bool_decoder (td : TYPE_descriptor) (ls : list byte)
2 : error (byte * Z) :=
3 match ls with
4 | [] ⇒ inl FAIL
5 | _ ⇒ (consumed, expected)← ber_check_tags td ls ;
6 if Zlength ls − consumed < expected || (expected != 1)
7 then inl FAIL
8 else y← hd (skipn consumed ls) ;;
9 inr (y , consumed + 1)
10 end.

15

Functional correctness and the “roundtrip” property

We show that decoder is inverse of encoder.

1 Theorem boolean_roundtrip : ∀ td ls b z,
2 decoder_type td = BOOLEAN_t→
3 bool_encoder td b = inr (z, ls)→
4 bool_decoder td ls = inr (b, z).

We prove that the executable spec encodes and decodes bytes in
conformance with the high-level specification.

1 Theorem bool_decoder_correctness : ∀ td ls b z,
2 bool_decoder td ls = inr (b, z)↔ BER (BOOLEAN b) (firstn z ls).

16

VST specification

To show C implementation correctness wrt the executable (and
hence high-level spec) we prove a separation logic triple

P{c}Q

that given the precondition P, the execution of the C light function c
terminates with the post-condition Q being true. The post-condition
says that c returns the value according to the executable spec.

17

VST spec, encoder pre- and post-condition

The memory specification uses spatial predicates v ← p (“at address
p there is a value v”).

We can combine the predicates using the separating conjuction ∗:
each such conjunct is true on a separate sub-heap of the memory,
thus guaranteeing non-overlapping of pointers.

The precondition relates the C types such as
_asn_TYPE_descriptor_s, int, *char of BOOLEAN_decoder_ber to the
abstract types of Coq TYPE_descriptor, B, list byte etc.

In the post-condition, we use the executable specification to state
that the correct result is written in memory.

18

VST spec, decoder pre- and post-condition

1 PRE [(td : TYPE_descriptor)← td_p *
2 (buf : list byte)← buf_p ... *
3 bool_value_p← bool_value_pp *
4 (res : code * Z) ← res_p *
5 if bool_value_p == null then emp else _← bool_value_p]
6
7 POST [(* Unchanged memory *)
8 td← td_p * buf← buf_p ... *
9 (* Changed memory *)
10 EX v : val, EX ls : list val,
11 v ← bool_value_pp *
12 if v == null
13 then res← (RC_FAIL, 0)
14 else match bool_decoder td buf with
15 | inr (r , c) ⇒ res← (RC_OK, c) * v ← r
16 | inl FAIL⇒ res← (RC_FAIL, 0) * v← ls
17 end).

19

VST proof

The proof is done using so-called forward simulation. To prove
P{c}Q:

• start assuming the precondition P
• sequentially execute statements of the function c
• each statement generates a post-condition that follows form its
execution

• aǒter executing the last statement of c, prove that the
post-condition Q holds.

VST provides tactics to do most of these steps automatically. One
has to provide joint postconditions for if statements and loop
invariant for the loop

20

Lessons learned and future work

• We have the basic infrastructure in place to prove the X.509 part
of ASN1C

• The memory-related parts of the proof are uniform so can be
reused

• We use a layered approach to decrease the creative effort in the
VST proof

• A realistic subset of C code is supported by VST
• But extensions and more automation is needed for industrial
scale projects

21

Join us!

The project is in active development right now, but given the
ambitious scope a significant effort is required for it’s completion.
Digamma.ai is committed to sponsor the initial stage of the project
and we are currently looking for industry and academic partners to
join us in the full ASN.1 verification endeavor.

Contact:

• Vadim Zaliva, vzaliva@cmu.edu, @vzaliva
• Nika Pona, npona@digamma.ai

22

mailto:vzaliva@cmu.edu
https://twitter.com/vzaliva
mailto:npona@digamma.ai

	ASN.1
	Formal verification using Coq
	Verification Architecture
	Boolean decoder example

