
IEEE S&P 2020 LangSec workshop

The geometry of syntax and semantics
for directed file transformations

Steve Huntsman 1

Michael Robinson 2

1FAST Labs / Cyber Technology

2American University

21 May 2020

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 2

string.h must be used carefully to prevent buffer overflows

• X = strings of ASCII NULLs
and printable characters

• G = cyclic shifts on
individual characters

• Goal: remove NULLs and
punctuation; make lowercase

• This example is discussed in
the paper

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 3

Transform files to achieve language-theoretical security

• X = space of files in some
fixed format (e.g., PDF)

• G = various invertible
transformations

• Goal: eliminate
nondeterministic syntax

• Input ambiguity =
vulnerability

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 4

Patch binary code to secure critical legacy systems

• X = space of disassembled
binary code

• G = “sugar-neutral” lifts,
translations, etc

• Goal: parsimoniously patch
a known vulnerability

• Compiler/build options,
dependencies make this hard

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 5

Principal bundles model syntax and semantics

• X = space of documents

• G = group of invertible
transformations

• Think of X like a manifold
and get something akin to a
principal bundle P(X ,G)

• Locally looks like X × G
• G acts on P nicely

• E.g., X = S1 (time of day);
G = Z (epoch); P = R (as
a helix above X)

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 6

Principal bundles model syntax and semantics

• X = space of documents

• G = group of invertible
transformations

• Think of X like a manifold
and get something akin to a
principal bundle P(X ,G)

• Locally looks like X × G
• G acts on P nicely

• E.g., X = S1 (time of day);
G = Z (epoch); P = R (as
a helix above X)

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 7

Principal bundles model syntax and semantics

• X = space of documents

• G = group of invertible
transformations

• Think of X like a manifold
and get something akin to a
principal bundle P(X ,G)

• Locally looks like X × G
• G acts on P nicely

• E.g., X = S1 (time of day);
G = Z (epoch); P = R (as
a helix above X)

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 8

Principal bundles model syntax and semantics

• X = space of documents

• G = group of invertible
transformations

• Think of X like a manifold
and get something akin to a
principal bundle P(X ,G)

• Locally looks like X × G
• G acts on P nicely

• E.g., X = S1 (time of day);
G = Z (epoch); P = R (as
a helix above X)

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 9

Principal bundles model syntax and semantics

• X = space of documents

• G = group of invertible
transformations

• Think of X like a manifold
and get something akin to a
principal bundle P(X ,G)

• Locally looks like X × G
• G acts on P nicely

• E.g., X = S1; G = (0, 1) w/
x � y := f (f −1(x) + f −1(y))
for invertible f : R→ (0, 1)

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 10

Principal bundles model syntax and semantics

• X = space of documents

• G = group of invertible
transformations

• Think of X like a manifold
and get something akin to a
principal bundle P(X ,G)

• Locally looks like X × G
• G acts on P nicely

• E.g., Hopf fibration
S1 → S3 → S2

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 11

Connections model geometry directing transformations

• Principal bundles are a
natural arena for geometry
realized through a
connection

• I.e., a “vertical” and
“horizontal” direct sum
decomposition of tangent
spaces . . .

• . . . that is equivariant
under group action

• Connects local product
geometries via parallel
transport

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 12

Connections model geometry directing transformations

• Principal bundles are a
natural arena for geometry
realized through a
connection

• I.e., a “vertical” and
“horizontal” direct sum
decomposition of tangent
spaces . . .

• . . . that is equivariant
under group action

• Connects local product
geometries via parallel
transport

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 13

Connections model geometry directing transformations

• Principal bundles are a
natural arena for geometry
realized through a
connection

• I.e., a “vertical” and
“horizontal” direct sum
decomposition of tangent
spaces . . .

• . . . that is equivariant
under group action

• Connects local product
geometries via parallel
transport

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 14

Connections model geometry directing transformations

• Principal bundles are a
natural arena for geometry
realized through a
connection

• I.e., a “vertical” and
“horizontal” direct sum
decomposition of tangent
spaces . . .

• . . . that is equivariant
under group action

• Connects local product
geometries via parallel
transport

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 15

Syntactic transformations must be invertible

• This requirement of the
mathematical model is really
a hint about how to perform
file transformations

• Record (or in reverse,
delete) details of atomic
transformations in ancillae

objend

⇒ objend % objend -> endobj

⇒ endobj % objend -> endobj

• Sugar-neutral: transformations
should handle sugar, but not
introduce or eliminate it

• Suggests using normal forms

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 16

Syntactic transformations must be invertible

• This requirement of the
mathematical model is really
a hint about how to perform
file transformations

• Record (or in reverse,
delete) details of atomic
transformations in ancillae

objend

⇒ objend % objend -> endobj

⇒ endobj % objend -> endobj

• Sugar-neutral: transformations
should handle sugar, but not
introduce or eliminate it

• Suggests using normal forms

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 17

Syntactic transformations must be invertible

• This requirement of the
mathematical model is really
a hint about how to perform
file transformations

• Record (or in reverse,
delete) details of atomic
transformations in ancillae

objend

⇒ objend % objend -> endobj

⇒ endobj % objend -> endobj

• Sugar-neutral: transformations
should handle sugar, but not
introduce or eliminate it

• Suggests using normal forms

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 18

Syntactic transformations must be invertible

• This requirement of the
mathematical model is really
a hint about how to perform
file transformations

• Record (or in reverse,
delete) details of atomic
transformations in ancillae

objend

⇒ objend % objend -> endobj

⇒ endobj % objend -> endobj

• Sugar-neutral: transformations
should handle sugar, but not
introduce or eliminate it

• Suggests using normal forms

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 19

Syntactic transformations must be invertible

• This requirement of the
mathematical model is really
a hint about how to perform
file transformations

• Record (or in reverse,
delete) details of atomic
transformations in ancillae

objend

⇒ objend % objend -> endobj

⇒ endobj % objend -> endobj

• Sugar-neutral: transformations
should handle sugar, but not
introduce or eliminate it

• Suggests using normal forms

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 20

Syntactic transformations must be invertible

• This requirement of the
mathematical model is really
a hint about how to perform
file transformations

• Record (or in reverse,
delete) details of atomic
transformations in ancillae

objend

⇒ objend % objend -> endobj

⇒ endobj % objend -> endobj

• Sugar-neutral: transformations
should handle sugar, but not
introduce or eliminate it

• Suggests using normal forms

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 21

Syntactic transformations must be invertible

• This requirement of the
mathematical model is really
a hint about how to perform
file transformations

• Record (or in reverse,
delete) details of atomic
transformations in ancillae

objend

⇒ objend % objend -> endobj

⇒ endobj % objend -> endobj

• Sugar-neutral: transformations
should handle sugar, but not
introduce or eliminate it

• Suggests using normal forms

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 22

Normal forms simplify and disambiguate

int i;

for (i=0; i<10; i++)

{

z+=i;

}

int n=0;

while (n<10) {

x+=n;

n++;

}

(From Lacomis et al.)

jmp @5

@4:

jmp @9

@8:

jne @19

jmp @10

@19:

jmp @14

@13:@14:

jg @13

@9:@10:

jge @20

jmp @8

@5:@20:

jge @21

jmp @4

@21:

START; S

do while b

S

do while b

if b

S

do while b

S

enddo

endif

S

enddo

S

enddo; HALT

(From Zhang and D’Hollander)

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 23

Concrete syntax trees parameterize a principal bundle

• G corresponds to
semantics-preserving CST
transformations

• Equivalence class of CSTs
corresponding to a given
AST has group-theoretical
and language security
significance and indicates
format redundancy

• E.g., xref table in PDF
(which nobody trusts)

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 24

Dynamic concretization semantically enriches an AST

[Files] can be considered as an abstraction of their semantics.
For example the syntax of [files] records the existence of
[objects] and maybe their type but not [the trace of a parser or
renderer], as defined by the semantics. 1

• Annotating (with, e.g., types) and cross-linking an AST gives
a semantically rich derived graph

• To understand a file, parse it . . .

• . . . to understand it more, render/compile it

1[Cousot and Cousot], replacing “program” and
“variable” with “file” and “object,” respectively.

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 25

Dynamic concretization semantically enriches an AST

[Files] can be considered as an abstraction of their semantics.
For example the syntax of [files] records the existence of
[objects] and maybe their type but not [the trace of a parser or
renderer], as defined by the semantics. 1

• Annotating (with, e.g., types) and cross-linking an AST gives
a semantically rich derived graph

• To understand a file, parse it . . .

• . . . to understand it more, render/compile it

1[Cousot and Cousot], replacing “program” and
“variable” with “file” and “object,” respectively.

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 26

To transform syntax trees, transform derived graphs

1 START

2 do while b

3 do while b

4 do while b

5 do while b

6 S

7 enddo

8 S

9 enddo

10 if b

11 do while b

12 S

13 enddo

14 if b

15 S

16 endif

17 endif

18 enddo

19 enddo

20 HALT

 1 START

 2 do-while

 3 do-while

 4 do-while

 5 do-while

 6 S

 8 S

 10 if-else

 10 if

 11 do-while

 12 S

 14 if-else

 14 if

 15 S

 1 START
 2 do while b

 3 do while b
 4 do while b

 5 do while b
 6 S

 7 enddo

 8 S

 9 enddo

 10 if b

 11 do while b 12 S

 13 enddo

 14 if b

 15 S

 16 endif
 17 endif

 18 enddo

 19 enddo

 20 HALT

• Compilers parse
source code into
abstract syntax
tree, then
cross-link into
control flow graph

• PDF analogue:
indirect object
cross-references

• Transform the
derived graph to
transform ASTs

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 27

To transform syntax trees, transform derived graphs

1 START

2 do while b

3 do while b

4 do while b

5 do while b

6 S

7 enddo

8 S

9 enddo

10 if b

11 do while b

12 S

13 enddo

14 if b

15 S

16 endif

17 endif

18 enddo

19 enddo

20 HALT

 1 START

 2 do-while

 3 do-while

 4 do-while

 5 do-while

 6 S

 8 S

 10 if-else

 10 if

 11 do-while

 12 S

 14 if-else

 14 if

 15 S

 1 START
 2 do while b

 3 do while b
 4 do while b

 5 do while b
 6 S

 7 enddo

 8 S

 9 enddo

 10 if b

 11 do while b 12 S

 13 enddo

 14 if b

 15 S

 16 endif
 17 endif

 18 enddo

 19 enddo

 20 HALT

• Compilers parse
source code into
abstract syntax
tree, then
cross-link into
control flow graph

• PDF analogue:
indirect object
cross-references

• Transform the
derived graph to
transform ASTs

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 28

To transform syntax trees, transform derived graphs

1 START

2 do while b

3 do while b

4 do while b

5 do while b

6 S

7 enddo

8 S

9 enddo

10 if b

11 do while b

12 S

13 enddo

14 if b

15 S

16 endif

17 endif

18 enddo

19 enddo

20 HALT

 1 START

 2 do-while

 3 do-while

 4 do-while

 5 do-while

 6 S

 8 S

 10 if-else

 10 if

 11 do-while

 12 S

 14 if-else

 14 if

 15 S

 1 START
 2 do while b

 3 do while b
 4 do while b

 5 do while b
 6 S

 7 enddo

 8 S

 9 enddo

 10 if b

 11 do while b 12 S

 13 enddo

 14 if b

 15 S

 16 endif
 17 endif

 18 enddo

 19 enddo

 20 HALT

• Compilers parse
source code into
abstract syntax
tree, then
cross-link into
control flow graph

• PDF analogue:
indirect object
cross-references

• Transform the
derived graph to
transform ASTs

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 29

To transform syntax trees, transform derived graphs

• Compositionally transform derived graphs
• Restructure; decompose/locally perturb

• Invertibly reduce derived graphs back to syntax trees
• Local AST dissimilarities suffice for geometry

• E.g., elimination of nondeterministic syntax elements
• E.g., local similarity to some reference file

• This approach inherits compositionality of derived graphs and
can be viewed through the lens of a category of lenses

unstructured

control flow

structured

CFG0 (ASM)

structured

CFG1 (IR1)

structured

CFG2 (IR2)

disassembled

binary
AST0 (ASM) AST1 (IR1) AST2 (IR2)

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 30

To transform syntax trees, transform derived graphs

• Compositionally transform derived graphs
• Restructure; decompose/locally perturb

• Invertibly reduce derived graphs back to syntax trees
• Local AST dissimilarities suffice for geometry

• E.g., elimination of nondeterministic syntax elements
• E.g., local similarity to some reference file

• This approach inherits compositionality of derived graphs and
can be viewed through the lens of a category of lenses

unstructured

control flow

structured

CFG0 (ASM)

structured

CFG1 (IR1)

structured

CFG2 (IR2)

disassembled

binary
AST0 (ASM) AST1 (IR1) AST2 (IR2)

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 31

Dissimilarities on file artifacts yield geometry

• Attributed tree dissimilarities for CSTs
• Edit distance exploits compositionality
• Kernels are fast

• Sequence dissimilarities for traces

• Any parser IR (token sequence, CST, AST, etc.) defines a
section associated to a set of execution traces

• Software errors ⇒ section is typically local, but ideally global

• Order metric for ontologies

• Use w/ topological differential testing for de facto syntax ⇒ X

• Wasserstein metric on functor from a small category to Set

• E.g., small category = two parallel morphisms between two
objects ⇒ functor = quiver

• Convex relaxation of Hausdorff-style metric ⇒ linear program
• Attributed/labeled structures not covered by this at present

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 32

Dissimilarities on file artifacts yield geometry

• Attributed tree dissimilarities for CSTs
• Edit distance exploits compositionality
• Kernels are fast

• Sequence dissimilarities for traces
• Any parser IR (token sequence, CST, AST, etc.) defines a

section associated to a set of execution traces
• Software errors ⇒ section is typically local, but ideally global

• Order metric for ontologies

• Use w/ topological differential testing for de facto syntax ⇒ X

• Wasserstein metric on functor from a small category to Set

• E.g., small category = two parallel morphisms between two
objects ⇒ functor = quiver

• Convex relaxation of Hausdorff-style metric ⇒ linear program
• Attributed/labeled structures not covered by this at present

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 33

Dissimilarities on file artifacts yield geometry

• Attributed tree dissimilarities for CSTs
• Edit distance exploits compositionality
• Kernels are fast

• Sequence dissimilarities for traces
• Any parser IR (token sequence, CST, AST, etc.) defines a

section associated to a set of execution traces
• Software errors ⇒ section is typically local, but ideally global

• Order metric for ontologies
• Use w/ topological differential testing for de facto syntax ⇒ X

• Wasserstein metric on functor from a small category to Set

• E.g., small category = two parallel morphisms between two
objects ⇒ functor = quiver

• Convex relaxation of Hausdorff-style metric ⇒ linear program
• Attributed/labeled structures not covered by this at present

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 34

Dissimilarities on file artifacts yield geometry

• Attributed tree dissimilarities for CSTs
• Edit distance exploits compositionality
• Kernels are fast

• Sequence dissimilarities for traces
• Any parser IR (token sequence, CST, AST, etc.) defines a

section associated to a set of execution traces
• Software errors ⇒ section is typically local, but ideally global

• Order metric for ontologies
• Use w/ topological differential testing for de facto syntax ⇒ X

• Wasserstein metric on functor from a small category to Set
• E.g., small category = two parallel morphisms between two

objects ⇒ functor = quiver
• Convex relaxation of Hausdorff-style metric ⇒ linear program
• Attributed/labeled structures not covered by this at present

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 35

In general, consider fibrations endowed with geometry
• A fibration is a generalization of a fiber bundle that retains

desirable homotopy properties
• Homotopy-equivalent fibers
• Homotopy lifting property: if f , f̃0 make the outer square

commute, there exists f̃ making the entire diagram commute

• Key feature: a path in X can be uniquely lifted to a path in P

• Homotopy type theory: dependent types are fibrations
• Avoid invertibility requirement via monoidal fibrations?

• Maybe, but trading simplicity for generality is not a good start

Y

Y × [0, 1]

P

X

id × {0}

f̃0

f

π
f̃

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 36

In general, consider fibrations endowed with geometry
• A fibration is a generalization of a fiber bundle that retains

desirable homotopy properties
• Homotopy-equivalent fibers
• Homotopy lifting property: if f , f̃0 make the outer square

commute, there exists f̃ making the entire diagram commute

• Key feature: a path in X can be uniquely lifted to a path in P

• Homotopy type theory: dependent types are fibrations

• Avoid invertibility requirement via monoidal fibrations?

• Maybe, but trading simplicity for generality is not a good start

Y

Y × [0, 1]

P

X

id × {0}

f̃0

f

π
f̃

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 37

In general, consider fibrations endowed with geometry
• A fibration is a generalization of a fiber bundle that retains

desirable homotopy properties
• Homotopy-equivalent fibers
• Homotopy lifting property: if f , f̃0 make the outer square

commute, there exists f̃ making the entire diagram commute

• Key feature: a path in X can be uniquely lifted to a path in P

• Homotopy type theory: dependent types are fibrations
• Avoid invertibility requirement via monoidal fibrations?

• Maybe, but trading simplicity for generality is not a good start

Y

Y × [0, 1]

P

X

id × {0}

f̃0

f

π
f̃

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 38

Lenses can help with complex file transformations

• Simple structural dependencies such as cross-references can
be handled using a derived graph

• Complex structural dependencies such as checksums can
obstruct ad hoc transformations to a normal form

• The notion of a lens provides a principled, compositional
solution that permits modifications to a file to be
automatically transported to its putative normal form

• Lenses have been synthesized at small scale from
specifications and translation examples, suggesting an
approach for safely transforming files

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 39

Lenses can help with complex file transformations

• Simple structural dependencies such as cross-references can
be handled using a derived graph

• Complex structural dependencies such as checksums can
obstruct ad hoc transformations to a normal form

• The notion of a lens provides a principled, compositional
solution that permits modifications to a file to be
automatically transported to its putative normal form

• Lenses have been synthesized at small scale from
specifications and translation examples, suggesting an
approach for safely transforming files

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 40

Generalized lenses are Grothedieck fibrations

• A generalized lens category can be defined in terms of a
category C and a functor F : Cop → Cat

• This recipe turns out to yield a Grothendieck fibration or
fibered category

• Generalized “total space” of a bundle

• Many of the cases motivating the definition of this generalized
lens category correspond specifically to bundles

• Bimorphic lenses can be interpreted as trivial bundles (i.e., the
total space is a Cartesian product)

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 41

Generalized lenses are Grothedieck fibrations

• A generalized lens category can be defined in terms of a
category C and a functor F : Cop → Cat

• This recipe turns out to yield a Grothendieck fibration or
fibered category

• Generalized “total space” of a bundle

• Many of the cases motivating the definition of this generalized
lens category correspond specifically to bundles

• Bimorphic lenses can be interpreted as trivial bundles (i.e., the
total space is a Cartesian product)

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 42

Semantics is a modulus (complete isomorphism invariant)

A mathematically attractive definition of semantics is that it is
the invariant after translation. If we view translation as
operators between different [representations], the fact that
semantics is preserved after translation means that the
generators for different [representations] are all similar to one
another [i.e., generators commute with translations]. 2

• Moduli spaces or stacks describe the algebraic invariants
associated to categories fibered in groupoids

• For the moduli stack of elliptic curves the appropriate (coarse,
i.e., automorphism-forgetting) modulus is the j-invariant

• Modular forms are sections of line bundles on this stack

• The role of “total space” is played by a Grothendieck fibration

2[E and Zhou]

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 43

Thanks

BAE Systems FAST Labs @ https://bit.ly/2X2UwcP

steve.huntsman @ baesystems.com

paper @ https://arxiv.org/abs/2001.04952

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 44

Syntax : semantics :: algebra : [arena for] geometry

• LHS = categorical logic

• Simply typed lambda calculus : Cartesian closed category
• First-order logic : hyperdoctrine
• Dependent type theory : locally Cartesian closed category
• Homotopy type theory : elementary (∞, 1) topos

• RHS = Isbell/sheaf/spectral duality; noncommutative
topology

• Boolean algebra : Stone space
• Commutative C*-algebra : compact Hausdorff space
• Commutative ring : affine scheme
• Crossed product C*-algebra : principal bundle

• No actual geometry yet, just spaces as substrates

The duality between syntax and semantics is really a
manifestation of that between algebra and geometry. 3

3[Awodey and Forssell]

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 45

Syntax : semantics :: algebra : [arena for] geometry

• LHS = categorical logic
• Simply typed lambda calculus : Cartesian closed category
• First-order logic : hyperdoctrine
• Dependent type theory : locally Cartesian closed category
• Homotopy type theory : elementary (∞, 1) topos

• RHS = Isbell/sheaf/spectral duality; noncommutative
topology

• Boolean algebra : Stone space
• Commutative C*-algebra : compact Hausdorff space
• Commutative ring : affine scheme
• Crossed product C*-algebra : principal bundle

• No actual geometry yet, just spaces as substrates

The duality between syntax and semantics is really a
manifestation of that between algebra and geometry. 3

3[Awodey and Forssell]

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 46

Syntax : semantics :: algebra : [arena for] geometry

• LHS = categorical logic
• Simply typed lambda calculus : Cartesian closed category
• First-order logic : hyperdoctrine
• Dependent type theory : locally Cartesian closed category
• Homotopy type theory : elementary (∞, 1) topos

• RHS = Isbell/sheaf/spectral duality; noncommutative
topology

• Boolean algebra : Stone space
• Commutative C*-algebra : compact Hausdorff space
• Commutative ring : affine scheme
• Crossed product C*-algebra : principal bundle

• No actual geometry yet, just spaces as substrates

The duality between syntax and semantics is really a
manifestation of that between algebra and geometry. 3

3[Awodey and Forssell]

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 47

Syntax : semantics :: algebra : [arena for] geometry

• LHS = categorical logic
• Simply typed lambda calculus : Cartesian closed category
• First-order logic : hyperdoctrine
• Dependent type theory : locally Cartesian closed category
• Homotopy type theory : elementary (∞, 1) topos

• RHS = Isbell/sheaf/spectral duality; noncommutative
topology

• Boolean algebra : Stone space
• Commutative C*-algebra : compact Hausdorff space
• Commutative ring : affine scheme
• Crossed product C*-algebra : principal bundle

• No actual geometry yet, just spaces as substrates

The duality between syntax and semantics is really a
manifestation of that between algebra and geometry. 3

3[Awodey and Forssell]

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 48

Bundle geometry connects algebra across a base space

• Syntax transformations form a group (or groupoid)

• Semantically distinct (reps of)
files form a “base space”

• Homotopy hypothesis:
spaces =∞-groupoids

• Geometric interpretation
for base vs algebraic
interpretation for paths

• Unifying constructs:
bundles and fibrations

• Goal-directed file
transformation imbues
a notion of geometry
connecting syntax and semantics

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 49

Bundle geometry connects algebra across a base space

• Syntax transformations form a group (or groupoid)

• Semantically distinct (reps of)
files form a “base space”

• Homotopy hypothesis:
spaces =∞-groupoids

• Geometric interpretation
for base vs algebraic
interpretation for paths

• Unifying constructs:
bundles and fibrations

• Goal-directed file
transformation imbues
a notion of geometry
connecting syntax and semantics

IEEE S&P 2020 LangSec workshop Geometry of syntax and semantics 50

Bundle geometry connects algebra across a base space

• Syntax transformations form a group (or groupoid)

• Semantically distinct (reps of)
files form a “base space”

• Homotopy hypothesis:
spaces =∞-groupoids

• Geometric interpretation
for base vs algebraic
interpretation for paths

• Unifying constructs:
bundles and fibrations

• Goal-directed file
transformation imbues
a notion of geometry
connecting syntax and semantics

