LANGUAGE-AGNOSTIC INJECTION
DETECTION

Lars Hermerschmidt, Andreas Straub, Goran Piskachev

injections grow on trees

unparsing parsing

—

- . <html> = -

<head> HEAD
z <title>Page l</title>
I Text | </head> TITLE B

<body>Text</body>

</html>

(Pagel JI (Page 1 j l\ Text)

_——
M S o | TEVOLEY ~ Fraunhofer

IEM

SHOTGUN UNPARSER

4 DIRED PUTCHAR ('\n');

11 DIRED FPUTS LITERAL (":\n", stdout);

https://github.com/wertarbyte/coreutils/blob/master/src/ls.c

mkdir "1
1"

mkdir 2

ls | wc -1

S w N

https://github.com/wertarbyte/coreutils/blob/master/src/ls.c

WHY DO INJECTIONS EXIST?

e Shotgun Unparsers cause Injection Vulnerabilities

WHY DO INJECTIONS EXIST?

e Shotgun Unparsers cause Injection Vulnerabilities
But why?

WHY DO INJECTIONS EXIST?

e Shotgun Unparsers cause Injection Vulnerabilities
But why?
e Correct Unparser Generators are not used

WHY DO INJECTIONS EXIST?

e Shotgun Unparsers cause Injection Vulnerabilities
But why?

e Correct Unparser Generators are not used

But why?

WHY DO INJECTIONS EXIST?

e Shotgun Unparsers cause Injection Vulnerabilities
But why?

e Correct Unparser Generators are not used

But why?

e [Ois"soo simple", let's just use the core libs

WHY DO INJECTIONS EXIST?

e Shotgun Unparsers cause Injection Vulnerabilities
But why?

e Correct Unparser Generators are not used

But why?

e [Ois"soo simple", let's just use the core libs

But why?

WHY DO INJECTIONS EXIST?

e Shotgun Unparsers cause Injection Vulnerabilities
But why?

e Correct Unparser Generators are not used

But why?

e [Ois"soo simple", let's just use the core libs

But why?

e Corelibs don't provide secure input handling

WHY DO INJECTIONS EXIST?

e Shotgun Unparsers cause Injection Vulnerabilities
But why?

e Correct Unparser Generators are not used

But why?

e [Ois"soo simple", let's just use the core libs

But why?

e Corelibs don't provide secure input handling

But why?

WHY DO INJECTIONS EXIST?

e Shotgun Unparsers cause Injection Vulnerabilities
But why?

e Correct Unparser Generators are not used

But why?

e [Ois"soo simple", let's just use the core libs

But why?

e Corelibs don't provide secure input handling

But why?

e Lacking Awareness for the problem

WHY DO INJECTIONS EXIST?

e Shotgun Unparsers cause Injection Vulnerabilities
But why?

e Correct Unparser Generators are not used

But why?

e [Ois"soo simple", let's just use the core libs

But why?

e Corelibs don't provide secure input handling

But why?

e Lacking Awareness for the problem

But why?

WHY DO INJECTIONS EXIST?

e Shotgun Unparsers cause Injection Vulnerabilities
But why?

e Correct Unparser Generators are not used
But why?

e [Ois"soo simple", let's just use the core libs
But why?

e Corelibs don't provide secure input handling
But why?

e Lacking Awareness for the problem

But why?

e Core libs don't provide secure input handling

RELATED WORK

e Language specific static and dynamic analysis:
SQLi, XSS, ... are well known

e Language agnostic dynamic aka fuzzing:
Parsers are known to be broken

e AUTOGRAM uses dynamic taint tracking:
Grammar reconstruction from a given parser

Our contribution: Language agnostic detection of
injections for textual languages
Awareness

Detection is never complete; Use a constructive approach like McHammerCoder to solve
the injection problem.

https://github.com/McHammerCoder/McHammerCoder

THE SOLUTION

Show, don't tell

PROBLEM SPACE

Detecting unparsers

Identifying injections in a given unparser
Generate attacks

Extract full grammar

APPROACH OVERVIEW

e Guided fuzzing using language keyword information

e Keywords are extracted from unparse trees (UPTs)

e UPTs are inferred automatically using dynamic
program analysis

Infer dc@:) Extract }

Input Data Keywords

UPT INFERENCE

Unparser

Y

_..l Tracker }—»I:L.I:—r-[Miner }—»d{)b

Input Data Call trace Call tree UPT

—-—[Tracer p—=-»
[]

[

Input Data

UPT INFERENCE

Unparser

Y

Tracer

1|>>> CALL URL::toString:LE65
2 (params ...}
3| +++ STEP URL::toString:L667
4 {vars ...)
5 [oas]
6|>>> CALL URL::userInfo:Lllée
7| <<< RETN URL::userInfo:L11l%
8 (return wvalue)
g [...]
10| >>> CALL Host::toHostString:L58
11 »>> CALL Domain::toString:L117
12| €<< BRETN Domain::toString:L117
13| <<< RETN Host::toHestString:L358
14 [...]
15| +++ RETN URL::toString:L696

f i — -

/ -

* u

L]

—e¢ —— —>| Tracker
L]
Call trace Call tree

Miner

UPT

Input Data

UPT INFERENCE

1|URL: :toString
2 (params, return value)
3 URL: :userInfo
4 (params, return value)
5 Host::toHostString
6 L (params, return value)
7 Domain: :toString
Unparser 8 (params, return wvalue)
=~ - 1
T~ |
* L}
L] | |_.
Tracer > rl Tracker I:—" Miner
L]
Call trace Call tree UPT

10

UPT INFERENCE

Unparser

Y

— ‘Tracer

Input Data

URL
toString
. | A

&2

toHoHs‘tj':'siri ng [p?hj [qua‘y]

Domain
toString

[f ragnjr'mt]

Call trace

—_— e

[— La
07—'-| Tracker '—> I:—l-l Miner }—»

Call tree

I l—
-_—

—_—

UPT

11

UPTS AND KEYWORDS

[Host [pa;th\ {quéry fragment |
o rin ' : : —

|5chemew

e Keywords have no origin in any input

e They are created by the unparser
e Their location in the UPT shows where (structurally)

they are valid in the language

12

FUZZING

e generate targeted injection candidates based on
keywords

= example: "break out" of string-enclosing quotation marks

e evaluate injection success by comparing parse trees

= run both original input and modified input through unparser-parser round-trip
= compare structures of resulting parse trees
o if the parse tree changed, an injection was found

Input Data |

{|p—

Keywords

Generate
Input

-

r:|[Unparser]—-[Parser]—g:éj—

benign PT

—
Compare
—-

_}..

Unparser]—»[Parser]—»céjij—

Injection

malicious PT

13

RESULTS

e Promising results in case studies
= very accurate UPTs
s found (implanted) injection vulnerabilities

s structural keyword information can significantly
improve fuzzing

= caveat: not a quantitative evaluation
e Fuzzing automatically yields PoC exploits

14

KEY OBSERVATIONS

e "Recursive descent unparsers" exist
= common in ad-hoc implementations
e Difference to Taint Tracking:
= |everaging structural information to identify
keywords and their scope
e Requires structural variability in unparser outputs
= poor UPTs in "template-based" unparsers
s reduced to common taint tracking
» better use a sample output for mutation fuzzing

15

CONCLUSION

Language-agnostic Injection Detection
e works for recursive descent unparsers
e use keywords from UPTs in fuzzing

Awareness
e Creating outputis not just writing an array of bytes
e |njections might exist in all your unparses

Call to Action
Every programming language's core library deserves
an (un)parser

16

QUESTIONS?

Lars: @bob5ec on Twitter
Andreas: andy@strb.org
MARGOTUA code on GitHub

https://twitter.com/bob5ec
mailto:andy@strb.org
https://github.com/McHammerCoder/margotua

