
LANGUAGE-AGNOSTIC INJECTIONLANGUAGE-AGNOSTIC INJECTION
DETECTIONDETECTION

Lars Hermerschmidt, Andreas Straub, Goran Piskachev
injections grow on trees

1

SHOTGUN UNPARSERSHOTGUN UNPARSER

 DIRED_PUTCHAR ('\n');

DIRED_FPUTS_LITERAL (":\n", stdout);

if (recursive || print_dir_name)1
{2
if (!first)3

4
first = false;5
DIRED_INDENT ();6
PUSH_CURRENT_DIRED_POS (&subdired_obstack);7
dired_pos += quote_name (stdout, realname ? realname : name8
 dirname_quoting_options, NULL);9
PUSH_CURRENT_DIRED_POS (&subdired_obstack);10

11
}12

https://github.com/wertarbyte/coreutils/blob/master/src/ls.c

mkdir "1
1"
mkdir 2
ls | wc -l

1
2
3
4

2

https://github.com/wertarbyte/coreutils/blob/master/src/ls.c

WHY DO INJECTIONS EXIST?WHY DO INJECTIONS EXIST?
Shotgun Unparsers cause Injection Vulnerabilities

3

WHY DO INJECTIONS EXIST?WHY DO INJECTIONS EXIST?
Shotgun Unparsers cause Injection Vulnerabilities

But why?

3

WHY DO INJECTIONS EXIST?WHY DO INJECTIONS EXIST?
Shotgun Unparsers cause Injection Vulnerabilities

But why?
Correct Unparser Generators are not used

3

WHY DO INJECTIONS EXIST?WHY DO INJECTIONS EXIST?
Shotgun Unparsers cause Injection Vulnerabilities

But why?
Correct Unparser Generators are not used

But why?

3

WHY DO INJECTIONS EXIST?WHY DO INJECTIONS EXIST?
Shotgun Unparsers cause Injection Vulnerabilities

But why?
Correct Unparser Generators are not used

But why?
IO is "soo simple", let's just use the core libs

3

WHY DO INJECTIONS EXIST?WHY DO INJECTIONS EXIST?
Shotgun Unparsers cause Injection Vulnerabilities

But why?
Correct Unparser Generators are not used

But why?
IO is "soo simple", let's just use the core libs

But why?

3

WHY DO INJECTIONS EXIST?WHY DO INJECTIONS EXIST?
Shotgun Unparsers cause Injection Vulnerabilities

But why?
Correct Unparser Generators are not used

But why?
IO is "soo simple", let's just use the core libs

But why?
Core libs don't provide secure input handling

3

WHY DO INJECTIONS EXIST?WHY DO INJECTIONS EXIST?
Shotgun Unparsers cause Injection Vulnerabilities

But why?
Correct Unparser Generators are not used

But why?
IO is "soo simple", let's just use the core libs

But why?
Core libs don't provide secure input handling

But why?

3

WHY DO INJECTIONS EXIST?WHY DO INJECTIONS EXIST?
Shotgun Unparsers cause Injection Vulnerabilities

But why?
Correct Unparser Generators are not used

But why?
IO is "soo simple", let's just use the core libs

But why?
Core libs don't provide secure input handling

But why?
Lacking Awareness for the problem

3

WHY DO INJECTIONS EXIST?WHY DO INJECTIONS EXIST?
Shotgun Unparsers cause Injection Vulnerabilities

But why?
Correct Unparser Generators are not used

But why?
IO is "soo simple", let's just use the core libs

But why?
Core libs don't provide secure input handling

But why?
Lacking Awareness for the problem

But why?

3

WHY DO INJECTIONS EXIST?WHY DO INJECTIONS EXIST?
Shotgun Unparsers cause Injection Vulnerabilities

But why?
Correct Unparser Generators are not used

But why?
IO is "soo simple", let's just use the core libs

But why?
Core libs don't provide secure input handling

But why?
Lacking Awareness for the problem

But why?
Core libs don't provide secure input handling

3

RELATED WORKRELATED WORK
Language specific static and dynamic analysis:
SQLi, XSS, ... are well known
Language agnostic dynamic aka fuzzing:
Parsers are known to be broken
AUTOGRAM uses dynamic taint tracking:
Grammar reconstruction from a given parser

Our contribution: Language agnostic detection of
injections for textual languages

Awareness
Detection is never complete; Use a constructive approach like to solve

the injection problem.
McHammerCoder

4

https://github.com/McHammerCoder/McHammerCoder

THE SOLUTIONTHE SOLUTION
Show, don't tell

5

PROBLEM SPACEPROBLEM SPACE
Detecting unparsers
Identifying injections in a given unparser
Generate attacks
Extract full grammar

6

APPROACH OVERVIEWAPPROACH OVERVIEW
Guided fuzzing using language keyword information
Keywords are extracted from unparse trees (UPTs)
UPTs are inferred automatically using dynamic
program analysis

7

UPT INFERENCEUPT INFERENCE

8

UPT INFERENCEUPT INFERENCE

9

UPT INFERENCEUPT INFERENCE

10

UPT INFERENCEUPT INFERENCE

11

UPTS AND KEYWORDSUPTS AND KEYWORDS

Keywords have no origin in any input
They are created by the unparser
Their location in the UPT shows where (structurally)
they are valid in the language

12

FUZZINGFUZZING
generate targeted injection candidates based on
keywords

example: "break out" of string-enclosing quotation marks

evaluate injection success by comparing parse trees
run both original input and modified input through unparser-parser round-trip
compare structures of resulting parse trees

if the parse tree changed, an injection was found

13

RESULTSRESULTS
Promising results in case studies

very accurate UPTs
found (implanted) injection vulnerabilities
structural keyword information can significantly
improve fuzzing
caveat: not a quantitative evaluation

Fuzzing automatically yields PoC exploits

14

KEY OBSERVATIONSKEY OBSERVATIONS
"Recursive descent unparsers" exist

common in ad-hoc implementations
Difference to Taint Tracking:

leveraging structural information to identify
keywords and their scope

Requires structural variability in unparser outputs
poor UPTs in "template-based" unparsers
reduced to common taint tracking
better use a sample output for mutation fuzzing

15

CONCLUSIONCONCLUSION
Language-agnostic Injection Detection

works for recursive descent unparsers
use keywords from UPTs in fuzzing

Awareness
Creating output is not just writing an array of bytes
Injections might exist in all your unparses

Call to Action
Every programming language's core library deserves

an (un)parser
16

QUESTIONS?QUESTIONS?
Lars:

Andreas:

@bob5ec on Twitter

andy@strb.org

MARGOTUA code on GitHub

17

https://twitter.com/bob5ec
mailto:andy@strb.org
https://github.com/McHammerCoder/margotua

