Google
A Story About JavaScript

Natalie Silvanovich
May 21, 2020

About Me

e Natalie Silvanovich AKA natashenka

e Project Zero member

e Reported 100+ vulnerabilities in JavaScript and
Flash over the past 5 years

Google

LangSec

Google

Ambiguity of message/protocol
specification is insecurity; ad hoc parsing
is an engine of exploitation,; overly
complex syntax can make judging security

properties of input impractical or even
undecidable.

The State of JavaScript

e In 2020, there have been:

o 7 serious vulnerabilities in V8, one used in the wild

o 3 serious vulnerabilities in SpiderMonkey, 2 exploited in
the wild

o 4 serious vulnerabilities in JSC

o Does not include internally discovered bugs, or bugs in
other features where JavaScript contributed

o Itis currently May

Google

The State of JavaScript

e Also
o JavaScript engines have millions of lines of code
o Dozens of commits per day
o Performance is a challenge

Google

Why are there So many bugs in JavaScript?
What went wrong?
How can we do better?

Google

“The story so far: In the beginning
the JavaScript was created. This
has made a lot of people very
angry and been widely regarded
as a bad move.”

-- Douglas Adams

Google

Yahoo! - NCSA Mosaic H=l E3
File Edit History Manager View MNavigate Tools Hotsts Help

eld| SR =% Blw & 2| <«>| o] 8|7 &[T B [oreow
IXI\/IINID,//MM.yahoucom |

What's New Cheok Emaii

Yahoo! Auctions
Pohemog.y:colex U | free email(@yahoo.com whl.-?;};gﬁus

| | Search|advanced search

@0 YAHOOl o-0— °

Shopping - Auctions - Yellow Pages - People Search - Maps - Travel - Classifieds - Personals

Games - Chat - Clubs
Mail - Calendar - Messenger - Companion - My Yahoo! - News - Sports - Weather - TV -
i e, i ;l_‘

| | Tue08060093304
.00 Phrack 49 Oo.

Volume Seven, Issue Forty-Nine
File 14 of 16

BugTraq, roet, and Underground.Org
bring you

000000
Smashing The Stack For Fun And Profit
XO00O0OCOXOOXKOOOOKXXXXXXX

by Aleph One
alephl@underground.org

‘smash the stack’ [C programming]l n. On many C implementations
it is possible to corrupt the execution stack by writing past
the end of an array declared auto in a routine. Code that does
this is said to smash the stack, and can cause return from the
routine to jump to a random address. This can produce some of
the most insidious data-dependent bugs known to mankind.
Variants include trash the stack, scribble the stack, mangle

the stack; the term mung the stack is not used, as this is

never done intentionally. See spam; see also alias bug,

fandango on core, memory leak, precedence lossage, overrun screw.

Introduction

JavaScript History

1995 -- Brendan Eich creates JavaScript (originally Mocha and
then LiveScript) and it is released in Netscape

1996 - |E implements JScript, an implementation of JavaScript
1997 -- ECMAScript 1 released
1998 -- ECMAScript 2 released

1999 -- ECMAScript 3 released

Google

ECMAScript History

2008 -- ECMAScript 4 abandoned
2009 -- ECMAScript 5 released
2011 -- ECMAScript 5.1 released
2015 - ECMAScript 6 released
2016 - ECMAScript 7 released

Google

Weak Typing

e Strong typing was rejected in ECMA 4
o Consequences for security and performance

Google

Weak Typing

JavaScript

var a = “‘hello”;
var s = a.concat(b),

C++
void str concat(Obj this, Obj a) {

IsString(this) ;
IsString(obj) ;

Google

Weak Typing

e Type confusion occurs when a type is not checked correctly
o Highly exploitable bug type
e For vulnerabilities reported in 2020:
o 3/7 V8 bugs are type confusion
o 2/3 SpiderMonkey bugs are type confusion
o 2/4 JSC bugs are type confusion
e ~5% of Flash vulnerabilities were in ES4 engine

Google

Weak Typing

e Affects performance and maintainability
o Fundamentally, weak typing requires extra checks
o Browser JIT engines reduce checks at the cost of
development time, code complexity and risk of
introducing bugs

Google

ECMAScript 6

e ESG6 introduced features that caused a disproportionate
number of bugs

Google

Array.species

“But what if | subclass an array and slice it, and | want the thing |
get back to be a regular Array and not the subclass?”

class MyArray extends Array {
static get [Symbol.species]|() { return Array;}

¥

e Easily implemented by inserting a call to script into *every
single* Array native call

Google

Array|@@species] Vulnerabilities

Google

CVE-2017-5030: Out-of-bounds read in V8 Array.concat (Chrome)
CVE-2017-8634: Overflow in Array.concat (Edge)

CVE-2017-7064: appendMemcpy uninitialized memory copy (Safari)
CVE-2016-7190: Heap Overflow in Array.map (Edge)
CVE-2016-7200: Heap Overflow in Array.filter (Edge)
CVE-2017-0134: Overflow in Array.concat (Edge)

Bug 725865: Array Species Optimization Issue (Chrome)

Array|@@species] modification rate

Percentage of page views that use this feature
0.0020 %

0.0015

0.0010

Percentage

0.0005

0.0000

2016-07-01 2016-10-01 2017-01-01 2017-04-01 2017-07-01 2017-10-01

Date

Google

Array Index Accessors

var t = [1, 2, 3];
Object.defineProperty(t, '2', {
get: function() ({
return 7;

}) s

Google

Array Index Accessor Bugs

Google

Bug 386988: Out-of-bounds access vulnerability in Array.concat() (Chrome)
CVE-2016-5129: V8 OOB Read in GC with Array Object (Chrome)
CVE-2016-3386: Stack Overflow in Spread Operator (Edge)
CVE-2016-7202: Overflow in Array.reverse (Edge)

CVE-2016-7194: Info Leak in Function.apply (Edge)

CVE-2016-7194: Proxy Memory Corruption (Edge)

CVE-2016-7189: Info Leak in Array.join (Edge)

PZ 1230: Uninitialized memory reference in arrayProtoFuncSplice (Safari)
CVE-2016-7203: Heap Overflow in Array.splice (Edge)

Array Index Accessor Bugs requiring Array Inheritance

Google

PZ 1230: uninitialized memory reference in arrayProtoFuncSplice (Safari)
CVE-2016-1646: v8 Array.concat OOB access (Chrome)

CVE-2016-1677: type confusion lead to information leak in decodeURI (Chrome)
CVE-2017-0141: memory corruption in Array.reverse (Edge)

CVE-2017-2447: Out-of-bounds read when calling bound function (Safari)
CVE-2017-6980: arrayProtoFuncSplice doesn't initialize all indices (Safari)
CVE-2017-7005: JSGlobalObject::haveABadTime causes type confusion (Safari)
CVE-2017-6984: heap buffer overflow in Intl.getCanonicalLocales (Safari)

Array Index Accessor usage

e ~10% of webpages use array index accessors, the majority
due to jQuery

Google

What makes JSC have a bad time?

void JSGlobalObject::haveABadTime(VM& vm)
{

ASSERT (&vm == &this->vm());
if (isHavingABadTime())

return;

Google

What makes JSC have a bad time?

var t = Array.prototype;
Object.defineProperty(t, '2', {
get: function() {
return 7;

}) s

[1;

var a

Google

Why did these features cause so many bugs?

e \Violates developer expectations by adding call to user code
in new location

e Affects methods without code changes
e Requires a lot of code to implement
e Vastly increases the code’s range of behavior

Google

Google

| guess we created these
features without thinking of how
we were going to implement
these features

-- ES Committee member

Conclusions

e JavaScriptis an excellent example of how failing to design

with implementation in mind leads to security and other
problems

e [t is probably too late to fix JavaScript, but ...
o What ‘JavaScripts’ are we creating today?

o How can we make incremental progress on software
that is already implemented?

Google

Questions and Discussion

http://googleprojectzero.blogspot.com/
@natashenka
natashenka@google.com

Google

