
A Story About JavaScript

Natalie Silvanovich
May 21, 2020

About Me

● Natalie Silvanovich AKA natashenka
● Project Zero member
● Reported 100+ vulnerabilities in JavaScript and

Flash over the past 5 years

LangSec

Ambiguity of message/protocol
specification is insecurity; ad hoc parsing
is an engine of exploitation; overly
complex syntax can make judging security
properties of input impractical or even
undecidable.

The State of JavaScript

● In 2020, there have been:
○ 7 serious vulnerabilities in V8, one used in the wild
○ 3 serious vulnerabilities in SpiderMonkey, 2 exploited in

the wild
○ 4 serious vulnerabilities in JSC
○ Does not include internally discovered bugs, or bugs in

other features where JavaScript contributed
○ It is currently May

The State of JavaScript

● Also
○ JavaScript engines have millions of lines of code
○ Dozens of commits per day
○ Performance is a challenge

Why are there so many bugs in JavaScript?
What went wrong?

How can we do better?

“The story so far: In the beginning
the JavaScript was created. This

has made a lot of people very
angry and been widely regarded

as a bad move.”
-- Douglas Adams

JavaScript History

1995 -- Brendan Eich creates JavaScript (originally Mocha and
then LiveScript) and it is released in Netscape

1996 -- IE implements JScript, an implementation of JavaScript

1997 -- ECMAScript 1 released

1998 -- ECMAScript 2 released

1999 -- ECMAScript 3 released

ECMAScript History

2008 -- ECMAScript 4 abandoned

2009 -- ECMAScript 5 released

2011 -- ECMAScript 5.1 released

2015 -- ECMAScript 6 released

2016 -- ECMAScript 7 released

Weak Typing

● Strong typing was rejected in ECMA 4
○ Consequences for security and performance

Weak Typing

JavaScript

var a = “hello”;
var s = a.concat(b);

C++

void str_concat(Obj this, Obj a){
IsString(this);
IsString(obj);

 ...
}

Weak Typing

● Type confusion occurs when a type is not checked correctly
○ Highly exploitable bug type

● For vulnerabilities reported in 2020:
○ 3/7 V8 bugs are type confusion
○ 2/3 SpiderMonkey bugs are type confusion
○ 2/4 JSC bugs are type confusion

● ~5% of Flash vulnerabilities were in ES4 engine

Weak Typing

● Affects performance and maintainability
○ Fundamentally, weak typing requires extra checks
○ Browser JIT engines reduce checks at the cost of

development time, code complexity and risk of
introducing bugs

ECMAScript 6

● ES6 introduced features that caused a disproportionate
number of bugs

Array.species

“But what if I subclass an array and slice it, and I want the thing I
get back to be a regular Array and not the subclass?”

class MyArray extends Array {
 static get [Symbol.species]() { return Array;}

}

● Easily implemented by inserting a call to script into *every
single* Array native call

Array[@@species] Vulnerabilities

● CVE-2017-5030: Out-of-bounds read in V8 Array.concat (Chrome)
● CVE-2017-8634: Overflow in Array.concat (Edge)
● CVE-2017-7064: appendMemcpy uninitialized memory copy (Safari)
● CVE-2016-7190: Heap Overflow in Array.map (Edge)
● CVE-2016-7200: Heap Overflow in Array.filter (Edge)
● CVE-2017-0134: Overflow in Array.concat (Edge)
● Bug 725865: Array Species Optimization Issue (Chrome)

Array[@@species] modification rate

%

Array Index Accessors

var t = [1, 2, 3];
 Object.defineProperty(t, '2', {
 get: function() {
 return 7;
 }
 });

Array Index Accessor Bugs

● Bug 386988: Out-of-bounds access vulnerability in Array.concat() (Chrome)
● CVE-2016-5129: V8 OOB Read in GC with Array Object (Chrome)
● CVE-2016-3386: Stack Overflow in Spread Operator (Edge)
● CVE-2016-7202: Overflow in Array.reverse (Edge)
● CVE-2016-7194: Info Leak in Function.apply (Edge)
● CVE-2016-7194: Proxy Memory Corruption (Edge)
● CVE-2016-7189: Info Leak in Array.join (Edge)
● PZ 1230: Uninitialized memory reference in arrayProtoFuncSplice (Safari)
● CVE-2016-7203: Heap Overflow in Array.splice (Edge)

Array Index Accessor Bugs requiring Array Inheritance

● PZ 1230: uninitialized memory reference in arrayProtoFuncSplice (Safari)
● CVE-2016-1646: v8 Array.concat OOB access (Chrome)
● CVE-2016-1677: type confusion lead to information leak in decodeURI (Chrome)
● CVE-2017-0141: memory corruption in Array.reverse (Edge)
● CVE-2017-2447: Out-of-bounds read when calling bound function (Safari)
● CVE-2017-6980: arrayProtoFuncSplice doesn't initialize all indices (Safari)
● CVE-2017-7005: JSGlobalObject::haveABadTime causes type confusion (Safari)
● CVE-2017-6984: heap buffer overflow in Intl.getCanonicalLocales (Safari)

Array Index Accessor usage

● ~10% of webpages use array index accessors, the majority
due to jQuery

What makes JSC have a bad time?

void JSGlobalObject::haveABadTime(VM& vm)

{

 ASSERT(&vm == &this->vm());

 if (isHavingABadTime())

 return;

What makes JSC have a bad time?

var t = Array.prototype;
 Object.defineProperty(t, '2', {
 get: function() {
 return 7;
 }
 });

var a = [];

Why did these features cause so many bugs?

● Violates developer expectations by adding call to user code
in new location

● Affects methods without code changes
● Requires a lot of code to implement
● Vastly increases the code’s range of behavior

I guess we created these
features without thinking of how

we were going to implement
these features

-- ES Committee member

Conclusions

● JavaScript is an excellent example of how failing to design
with implementation in mind leads to security and other
problems

● It is probably too late to fix JavaScript, but …
○ What ‘JavaScripts’ are we creating today?
○ How can we make incremental progress on software

that is already implemented?

Questions and Discussion

http://googleprojectzero.blogspot.com/
@natashenka

 natashenka@google.com

